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Abstract

This paper describes a Monte Carlo method based on the theory of

)__S irandon p for estimating the distribution functions and means of

- .network completion time and shortest path time in a stochastic activity

network. In particular, the method leads to estimators whose variances

converge faster than 1/K , where K denotes the number of replications

collected in the experiment. The paper demonstrates how accuracy diminishes

for a given K with increasing dimensionality of the network and shows how a

procedure that uses a cujtset of the network together with convolution can

reduce dimensionality and increase accuracy. Two examples illustrate the

benefits of using quasirandom points together with a cutset and then

convolution.
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Introduction

* . Activity network analysis Is a fairly standard tool in Operations

Research. When arc completion times in such a network are deterministic,

veil-established algorithms exist for finding its network completion time and

shortest path time in a computationally efficient manner. For example, see

Elmaghraby (1977) and Wagner (1975). However, when arc completion times are

stochastic, analysis becomes considerably more difficult, even for relatively

small networks. Here the objective often is to compute the distribution

functions (d.fs.) and means of network completion time and shortest path

time, given the d.fs. of the statistically independent individual arc

completion times.

Because severe difficulties exist in deriving analytical solutions to

these problems, many analysts have turned to Monte Carlo methods to derive

approximate solutions. Van Slyke (1963) proposes the use of importance

sampling to gain efficiency in estimating the characteristics of networks.

Martin (1965) describes how one can increase statistical efficiency when the

arc passage time distributions are polynomials. Burt and Garman (1971)

describe how conditional sampling can reduce dimensionality and thus sampling

variation. Carrying this idea one step further Sigal, Pritsker and Solberg

(1979, 1980) show how one can use a cutset of a network to effect similar

reductions. The use of antithetic variates has also been proposed in a number

of studies, including Cheng (1980), Sullivan, Hayya and Schaul (1982) and

Grant (1982).

Although the benefits of these proposals are well established,

they all lead to estimators with variances 0(1/K) for K independent

replications. The present paper shows how to increase the rate of convergence

of this variance using guasirandom points and illustrates the success of the
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approach for two networks of N-8 and N-18 arcs. The theory of quasirandom

points has its origin in the numerical evaluation of multivariable integrals.

The theory concerns the identification of vector sequences that when used in

numerical integration lead to approximations whose absolute errors converge to

zero faster than if independent random vectors were used. Since one can

represent the desired d.f.. and means as multivariable integrals, the appeal

of quasirandom points is apparent. Moreover, combining the use of

quasirandom points with other approaches such as cutsets and convolution

leads to even greater advantage, as we demonstrate.

Section 1 presents the stochastic network problem in detail. Section 2

describes how one can view the problem as one of multivariable numerical

integration. Section 3 describes how one would tackle the problem by crude

Monte Carlo methods and also describes the benefits of conditional sampling.

Section 4 shows the benefits of using cutsets. Section 5 then indicates how

cutsets together with convolution can significantly reduce the dimensionality

of the problem.

Section 6 presents a short discussion of the principal concepts of

multivariable numerical integration using quasirandom points and shows the

extent to which known results apply to the problem at hand. Section 7 lays

out an experiment whose design is used in Section 8 with two examples to show

the benefit of using quasirandom points, especially when combined with

convolution and the cutset approach.
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i 1. Definitions

Consider an acyclic directed network with a single source, single sink, N

arcs and L paths. Let X1,...,XN , the passage tines for arcs 1,...,N ,

be independent random variables where Xi has distribution function (d.f.) Fi

on [0,-) and inverse distribution function Gi(u) = min[x: Fi(x) > u

0 u < 1]. The completion time of path m is

Tm - ainX ileic7a Xi (I)

where ai3-l if arc i is on path m , aim=O otherwise and Im denotes

the set of arcs on path a

The principal purpose of this study is to characterize the network

completion time

T* = sax(Tl,...,TL) (2)

and the shortest path time

T, - min(Ti,...,TL) (3)

For T* characterizations include:

a. pr(T* < t) 0 < t <

b. E T*

c. pr(m is the longest path) m 1,...,L

d. pr(T* 4 t) 0 4 t <

e. E T,

f. pr(m is the shortest path) n ,..,L

The present study concerns the estimation of a, b, d and e . For expository

convenience the main body of the paper concerns the estimation of pr(T* < t).

The Appendix contains details for the estimation of the remaining quantities.

,? .. ,: .: ' . , . .. . . . . .- . - . _ . .- .- . . -. - . .. . . . . . .. . . - . . . . - .
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Let J131 denote the cardinality of 13 . If

L

then no paths share a common arc and T* and T* have d.fa.

L
V*(t) - m.ni1 FM (t) (5)

and

L
F,(t) = I - =i* ri - r m(t)) 0 4 t <

F1 being the convolution of the IIl arcs on path m . As an example,

"" suppose that arc times are exponential with

Fi(t) -l -e-It Xi > 0 Im (6)

Then one has for distinct Ai

F1 (t) - I-

J*i (7)

Usually the summation in (4) exceeds N in which case the derivations of

F* and F* are more complicated than in (5). In practice, even when (4)

-holds, the convolutions for ma,...,7 IL ay prove too complex to derive

analytically.

2. A Solution via Integration

An alternative approach to characterization is through integration; in

particular, numerical integration. Observe that one can write

r*(t) - E I[O,t)(T*)
11 N

.0h(t;xl,-..,x) H dFi(xi) (8a)

= f1...fg(t;ul,...,un) dul,...,duN (8b)
0 0

- -. .-.. -
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where

I[a,b) (W - if a 4 x < b

= 0 otherwise,
N N

h(t;xl,...,xN) I[0,t) (max(j 1 1 ainxi,...,£=1 aiLxi)) (9a)

and

g(t;ul,..',uN) " h(t;Cl(ul),...,GN(uN)) . (9b)

Now (8b) involves multiple integration over the N-dimensional unit hypercube

[0,1)x...x[0,1) , hereafter denoted by N • It is the expression (9b) on

which our analysis is based.

Consider the approximation

K J- lj uNj

where uj - {uij; j - 1,2,...} =i-,...,N are infinite sequences of points

in VN chosen in one of several ways. One way is through pure random sampling

which we call the crude Monte Carlo method.

3. Crude Monte Carlo Sampling

Let
a - ,,ax (1)..., .

where

TJm i-I aim Gi(uij) 1 =,...,L (12)

and uij i 1 1,...,N J - 1,...,K are i.i.d. from U[0,1) . Also define
8J~~g(t) - g(t;ulj . . u j  - 10,t)(T* ) o

lj'*.u j (13)

Then ZK(t) in (10) has expectation F*(t) and

va (t) [ - F*(t)]var "K(t) (14)

.- .
.
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To improve on the result in (14), Burt and Garman (1971) introduce the

use of conditional sampling. Suppose that there exist arcs il,...IL unique

to paths 1,...,L respectively. Assume that these arcs are distinct and

define

SJU = i= aim Gi(uij) (15)

i *ilI
and

L
g (t) H M 1 Fim(t - SJm) . (16)

Nov RK(t) in (10), based on (16), has the correct expectation Fl(t) , as

can be seen by integrating (16) with respect to the joint p.d.f, of

Sjl,...,SjL • But SK(M)has smaller variance than (14), as a result of

sampling from N-L instead of N arcs. Also note that

L
gj(t) 4 Jm'l Fim(t) (17)

provides an upper bound which also applies to YLKt).

In principle, conditional sampling can be made more effective by working

with subsets of arcs unique to each arc. Let

im - iml(Uj. I 1J) m = 1,...,L (18)

J*m
so that J i ts the set of arcs unique to path m Assume Palj> 1

M 1,...,L and define

Sjm " ici.j.aimGi(uij) (19)

and

L
gj(t) - -1 F3 2 (t-Sj

m ) (20)

where Fj denotes the d.f. of the sum of the passage times on the arcs unique
M

to path a . Since sampling in N + L L Sl dimensions is all that is

necessary, the use of (20) in (10) preserves unbiasedness and reduces variance

even further.

4-'
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In essence, the effect of conditional sampling is to replace the

coefficient of 1/K in (14) by one of smaller magnitude but in no way to

change the convergence rate with regard to K as K + - . Also, note the

upper bound

L.9 g(t) 4 Hm- Fim(t) (21)

which is tighter than the bound in (17).

4. Cutsets

In practice it is conceivable that at least one path does not have a

unique arc. That is, Paml - 0 for at least one path m . Figure 1

illustrates such a case. Although conditional sampling as described by Burt

Insert Fig. 1 about here.

and Garman does not apply here, another more general approach proposed by

Sigal, Pritsker and Solberg (1979, 1980) does. Let H denote a cutset of the

network. A cutset is a set of arcs that connects a set of nodes (0 containing

the source with a set of nodes ii containing the sink. Also, assume that

each path has only one arc in H . If each arc in H points from N to

ii:# , H is called a uniformly directed cutset (UDC).

Define

Sim - aim Gi(uij) (22)

and Y sH

YiiJ sup (ajm SJm) i L • (23)
[ m-l, .. .,

Then define

.g(t) Ric Fj(t - Y) (24)

Now sK(t) in (10) bases a 4) gives an unbiased estimate of F*(t)
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with smaller variance than crude Monte Carlo sampling since one is sampling in

"' only N -IHI dimensions. Since a network may have more than one UDC, using

the one with maximal cardinality gives the greatest reduction in

dimensionality. However, the determination of this cutset for an arbitrarily

large network is not trivial, being an NP complete problem. Nevertheless,

among alternative known cutsets for a given network, the one with largest

cardinality serves our purpose best. As an example of the use of cutsets note

that (e2, e3, e4, e7) and (e3, e5, e6, e7) are UDCs with maximal

cardinality 4 for the network of Fig. 1, whereas the cutset (el, e2, e3)

with cardinality 3 is not.

As a second example, consider the network in Fig. 2, taken from Battersby

(1970), which describes the steps encountered in the partial overhaul of a

unit in an oil refinery. Table I shows the incidence matrix a = II aim II

Insert Fig. 2 about here.

for arcs (rows) and paths (columns). Observe that arcs (e2, e3, e5, e6, e9,

elo, el2) and arcs (e2, e3, e5, eg, elo, el2, e15) form two UDCs with maximal

cardinality 7 . However, the cutset (e2, e3, e5, e6 + e15, eg, elo, el2)

formed by combining arcs e6 and e15 (see Fig. 2) has cardinality 8 and

can be used to advantage to reduce dimensionality.

Insert Table I about here.

5. Further Dimnsional Reduction

One can achieve at least one additional reduction in the dimensionality
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of sampling by exploiting available knowledge about a network. Let

im im - im n H (25)

where H denotes a UDC. Then define the subsets

i r I - L [(fl1  nil (26)"' .. m r  J=l M - im, a

m1 %, ... ,mr

1 4 ml < m2 < ... < mr 4L; r=l,...,L

Here J.l,...,m r denotes the subset of arcs, not in #j , that are uniquely on

paths ml,...,mr • Suppose there are q such nonempty sets R1,...,Rq.

Let FR denote the d.f. of the sum of the IRil arc passage times

corresponding to the arcs in Ri and let GR denote the correspondingCi

inverse d.f. Then define

SJm l j11 (1JcRi ajm) GRi(Uij) (27)

and

Yij - sup (Sjm) i -1 (28)

and

gj(t) - n.cH Fi(t - Tij) • (29)

Now, I(t) in (10) based on (29) again is an unbiased estimator of

F*(t). However, since N - IHI + q Ii., IR=I dimensions arise for sampling

per replication, one anticipates that var (t) has smaller magnitude than

previously described methods produce. Note that this reduced dimensionality

comes from the use of UDCs together with convolution.

6. Multivariable Numerical Integration

As (8b) shows, one can view F*(t) as the result of a multivariable

integration over a restricted region in VN • We now describe how taking this

..-.-/--;. .-. . . . . . .- .... . .--



view of the problem leads to useful results when quasirandom points are used.

Our account follows Kuipers and Niederreiter (1974) and Niederreiter (1978).

Also see Schmidt (1973).

Suppose that our objective is to evaluate the integral

B - f... f .,,)d:1 1 (30)

by

BK 1 I K f(u...---uN) (31)K J-1 j'N

and to derive bounds on the error

h- lB - BK1 (32)

Three definitions facilitate our description. Consider the sequences

{'j-(utj*...3u NJ) -

Definition 1. A(1R;K) -number of points that fall in R C U'N

Definition 2. S1 ,...,! are uniformly distributed in U'N if

lim A(1R;K) . i

K-- KX(R)

for all R - {(x1,...,x N): ai 4 x ( Bi i R C,.N CVN and where

A(R) is the measure of volume of R~ in ('N

Definition 3. The extreme discrepancy associated with a sequence 1 5 .

is

DK -DK(SLJ,...,iK) -I'V A( R; K) -(*

where 9k {(xl,...,x N) 0 -C Xi - 0j ,..N Hereafter we assume

4that ({.j j - 1,...,K) is a uniformly distributed sequence on V

These definitions together with several fundamental theorems from the

theory of quasirandom points provide us with a way of characterizing the

error (32). In particular,
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U .Theorem I (Hlawka 1961). If f is of bounded variation in the sense of

Hardy and Krause, then

AK < V(f,N)DK (33)

where V(f,N) is a function of the bounded variation in f in N and lower

* dimensions.

Theorem 2 (van Aardenne-Ehrenfest 1945). For any infinite sequence !1 , ,•••

with N > 1

lim KDK-
K..

Theorem 3 (Roth 1954) . For any sequence of K points in UN with N ) 2

CN (log K)(N-1)/2
'i K

where CN is a function of N only.

Theorem 4 (Roth 1954) . For any infinite sequence in UN with N I I

C' (log K)N/2
DK > K

where Cj is a function of N only.

Theorem 1 shows that one can bound the error (32) by a quantity

proportional to the extreme discrepancy DK , a most convenient result.

Theorem 2 implies that one cannot expect the extreme discrepancy to converge

as fast as 1/K . Theorems 3 and 4 provide lower bounds on how fast

convergence can occur.

We now describe a uniformly distributed sequence for which upper bounds

* are known. If .A > 2 is an integer, then every non-negative integer n has

an expansion of the form

n i-o aiRi aj (34)

0 'i 4 m and m = LlogRnJ

V
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Corresponding to this expansion one has the radical inverse function

#-(n) - J-o ajR7- -1  . (35)

We now define several sequences based on (34):

van der Corput Sequence: (2(j); j 0

Hammereley Sequence: (4*(j),..., 1 (J)' ; j 0, .-

where Rl,...,RK-1 are pairwise relatively prime.

Balton Sequence: [OR(J,....,4tN(i); jn0,,...,K-l}

where R1,...,RN are pairwise relatively prime.

The van der Corput sequence is uniformly distributed on V1 and was the first

sequence of this kind proposed for univariate numerical integration. The

Hamersley and Halton sequences are uniformly distributed on VN and as

Theorems 5 and 6 show they offer useful upper bounds.

Theorem 5 (Halton 1960). For the Hamersley sequence

DK € (1°$K)N-1 3Ri'2

i-I (Io--i) N>m xRi

Theorem 6 (Halton 1960). For the Halton sequence

' (log K)N Cl 3Ri-2
:i. < (K1 iog-) N > m xRi

Several issues of significance need to be mentioned now. Firstly, since

the van der Corput, Hammersley and Halton sequences are deterministic the

upper bounds can be interpreted as worst case bounds with certainty.

Secondly, although V(f,N) in (33) is in theory computable, in the present

case f is unknown. Thirdly, the bounds presented here hold for integration

the entire N-dimensional hypercube; however, as (8a), (9a) and (9b) show, our

problem calls for integration over a restricted region in V1 . Now it is

known (Niederreiter 1978, p. 982) that for integration over an arbitrary



L7-

-14-

region in C(
9k 4- C--(DlK)1/N (36)

where C * is a function of N • This is a considerably weaker bound but since

it applies to such a wider set of regions in UN than (33) does there is

reason to believe that the use of the Hamersley and Halton sequences can lead

to accelerated convergence.

The fourth issue concerns boundedness. In the case of estimating F*(t)

and F*(t) , this assumption is met. However, it is not met for ET* and

ET* . This fact together with the integration over a restricted region in UN

makes clear that when we move from theory to practice, some skepticism exists

as to how efficient our approach will be. As the examples in Section 8 show,

there is little basis for this skepticism.

The fifth issue relates to dimensionality. As Theorems 5 and 6 make

clear, it is in one's best interest to reduce dimensionality as such as

possible before using quasirandom points. The cutset approach together

with convolution are the methods we use to effect this reduction.

The sixth issue of significance concerns the choice between the

Hamersley (finite) and Halton (infinite) sequences in practice. If one uses

the Hammersley sequence for fixed K and then decides that the accuracy is

not acceptable, there is no recourse to continued exploitation of its special

structure since 0,1/K,...,(K-1)/K are the values in the Nth dimension. By

contrast, the Halton sequence enables us to continue exploitation by merely

generating additional points (#Rl( j ) ,, ,4tN(J)) J-k, k+l,... • The modest

degradation in the upper bound that arises when using the Halton rather than

.,...
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the Hammeraley sequence seems worth the price.

7. Experimental Design

.. This section describes the layout for an experiment designed to determine

the extent to which quasirandom points lead to accelerated accuracy

when estimating F*(t) , ET* , F*(t) and ET* for the networks in Figs. I

and 2 . In particular, we introduce a degree of randomness into the

experiment in order to compute estimates of the variances of our point

estimates. We then study the behavior of these sample variances as K

increases.

U.t -.sider an experiment consisting of Q statistically independent blocks

or macroreplications each of K microreplications. Let (Uia: i-l,...,N;

" l,...,Ql denote a sequence of i.i.d. random variables from u[O,1) and

define

Sim - (s: #ti(s) - Utm) i-l,...,N m-1,...,Q . (37)

Then on macroreplication m we use the quasirandom point

R i(Slm + J-l),',4'RN(SNa + J-1) on microreplication j J-I,...,K

Let Ojm denote the unbiased estimate of a particular quantity 0

computed on microreplication j on macroreplication m Then

where

-° 1 ,...,Q , (38)

are i.i.d. random variables with sample variance

2 Q.L ~ 0 )2 (39)
BK Q- m m Q

where

. 1

It is the behavior of sj versus K that interests us.

S. .
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To provide an instructive normalization we also run M4 statistically

independent macroreplications each of X-l microreplication. Let

denote the resulting estimates of 9 each with sample variance

" X..I. (- a a- Q (40)

where
" Om 1 M

."-l m

Then the quantity 2 /Ksg should increase as K increases if accelerated

convergence is occurring.

We set M-105 For the quasirandom case we perform runs for K-2j

J-1,2,... and set Q-216 /K for U(29  and Q-27  for K>29 . Following this

procedure enables us to treat K2 and wM as highly reliable point

estimators of the quantities var Om and var Om respectively.

8. Examples

We refer to the network in Fig. I as the SPS network and to the one in

Fig. 2 as the Battersby network. Table 2 lists the relevant cutsets and

noncutsets. In both examples the arc passage times are assumed independent

Insert Table 2 about here.

and exponentially distributed. For the SPS network the means are X1.10

A2-15 , X3-18 , X4-6 A5-7 , X6-3 , X7-10 and A8-2 . For arc i on

microreplication j on macroreplication m the arc passage time is

Xi = Gi(#ti(Sim + J-l)) =-Xiln(l - @i(Sim + J-1)) . (41)

For the runs using quasirandom points, the cutset M-(e2, e3, e4, e7) was

used reducing dimensionality to N-Iff - 8-44 . An algorithm due to Halton

4

o-°*>*
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and Sith (1964) was used to compute the Halton sequences. For the M

* independent sicroreplications all N arc times from (41) were used.

Table 3 shows the behavior of w2/Ks2  for P*(t) estimated at
M K

t-15, 30, 40, 50, 70 for KT* , for F*(t) estimated at t-5, 10, 15, 20, 25

and for ET* . As a point for comparison, Sigal, Pritaker and Solberg (1979)

Insert Table 3 about here.

report variance reductions ranging from 4.18 to 11.00 for the estimation

of F*(t) at t-1S, 30, 40, 50 and 70 using the cutset H and independent

microreplications.

The second example studies variance reduction for the Battersby network

using the means in Table 1. Two separate sets of experiments were run. The

first set uses partition 1 in Table 2 with the cutset H-(e2, e3, e 5 , e6 ,

e9 elo, e12) with quasirandom points, yielding a dimensionality of

N-tHj-ll • The second set uses partition 2 with the cutset H=(e2, e3, e.,

e6 + el5, eg, elo, el2) yielding a dimensionality of 6 after appropriate

convolution within the noncutset. The quantity F*(t) was estimated for

t=90, 110, 120, 130, 140, 150, 160, 180, 190 and F*(t) for t-20, 25, 30,

35, 40, 50, 60, 80, 90 . Table 4 shows the resulting variance reductions

wA/Ksi for V*(t) , ET* , F*(t) and 1T*

Insert Table 4 about here.

9-

,4



Tables 3 and 4 admit several instructive observations:

1. As K increases variance reduction increases; however,

variance reduction is not necessarily monotone in K.

4. For given K , variance reduction tends to decline with

increasing dimensionality.

3. For given K variance reduction is greater for F*(t) than

for ET* and for F,(t) than for ET, , showing the benefit

one obtains from bounded integrands.

Although these observations establish the benefits of using quasirandom

points with the cutset approach and convolution, there is a cost issue that

also needs to be considered. If one compares the cost of producing one sample

point for F*(t) , ET* , F*(t) and ET, using quasirandom points to the

cost of producing a sample point using pure random sampling, the ratio never

exceeds 2.5 in our experiments. The most costly step turns out to be

sampling the summed arc times xi + xj , in the noncutset of partition 2 in

Table 2, from the distribution function

i -Xit - Xjt

F(t) - 1 - e"" 1-Xt/XJ -Xj/Xi "

This was done using the Newton-Raphson method.

Since this cost ratio is independent of K , we have strong evidence

that for sufficiently large K , the quastrandom point method offers a clear

advantage over pure random sampling for networks of arbitrary size. A program

called NETWOK is currently under development to implement the proposed method

in a computationally efficient manner.

; ' . " ". . , " . . . -. " "-. . . • '.- " " . . " . - ' ' ' . " . - . .- . ." . .. " ' -- " . ." " " .. " '
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Appendix

Estimation of F*(t). We derive the estimator based on the cutset H and

(22). Let

ij inf (Sjm) i c H
"":min

_ , . .

and define

hj(t) 1 11ieH 11 Fi(t -Zij)I

Then

h(t) -. hj(t)

gives an unbiased estimator of F*(t) based on sampling from N - IHI

dimensions.

Estimation of ET* and IT*. Using (11) one has the unbiased estimator

I *K

forET* • Let

T*j min(TJI,...,TJL)

Then

is ai

:'' is an unbiased estimator of ET*
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TABLE 1

Incidence Matrix for Battersby Network
aim

Path a

Arci IX, 1 2 -3 4 5. 6 7 8

el 16 1 1

e2 16 1

e3 8 1

e4 6 1

S  16 1 1

e6  40

e7 24 1 1 1

e 16 1 1

9 16 1

elO 24 1

ell 81 1

e2 4

e3 36 1 1 1

e14 12

e15 8 1

e16 24 1 1 I

e17 8 1 1 1 1 1 1 1 1

e18 24 1 1 1 1 1 1 1 1

1...
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Table 2

Network Analysis

Network Cutset Noncutset

Fig. 1 c2, e3, e4, 67 e1, e5, 6. 68

Batteruby (Fig. 2) e2, e3, e5, e6, eg, elo, el, e4, e7, e8, ell,
Partition 1

e12 e13, e14, e15, e6,

e17, 618

Battersby (Fig. 2) 62, 63, e5, 66 + e15, e9, e1 + e4, 67 + 616,
Partition 2

610. 612 68 + e11, 613, e14,

e17 + 618

*i + ej Econvolution of the dMs. of arcs I and j
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Table 3

Variance Reduction w2 /Ks 2  for the SPS NetvorktM K

M-lo5 , N-8 L-6 , I-4

K F*(t) ET* F*(t) ET*
min max min max

2 42 106 7 46 196 8

. 22 53 96 9 44 345 9

23 74 101 12 53 773 11

24 87 177 17 125 957 19

l25 il 258 23 149 1,285 24

26 146 701 27 313 2,722 36

27 248 1,066 51 534 2,984 45

28 365 1,409 83 710 3,183 51

29 383 2,426 130 1,527 5,323 123

210 987 4,612 153 2,197 4,512 138

211 1,000 5,221 266 3,438 8,604 260

212 1,518 11,341 338 5,391 13,213 303

213 1,978 16,907 548 17,299 39,357 484

214 3,289 51,709 1,258 27,943 63,234 838

tmin and max for F*(t) denote, respectively, the minimal and maximal

variance reduction for t-15, 30, 40, 50, 70 . min and max for F*(t)

denote, respectively, the minimal and maximal variance reduction for

t-5, 10, 15, 20, 25
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Figure 1. S PS Network
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